Rem-dom-stroy.ru » Ремонт

Способы снижения интенсивности и скорости коррозии металлических изделий

Способы снижения интенсивности и скорости коррозии металлических изделий с фото

Коррозией называют самопроизвольное разрушение металлических поверхностей под влиянием взаимодействия металла с окружающей средой. Особенно сильно проявляя себя при повышенных механических и температурных напряжениях, коррозионные процессы наносят большой ущерб стальным конструкциям. Правильно оценить скорость коррозии означает повысить долговечность изделия.

Содержание:
  • Классификация видов ржавчины
  • Механизмы возникновения и развития коррозионных явлений
  • Электролитическая
  • В присутствии кислот
  • В присутствии нагрузок
  • Методы оценки коррозионных процессов
  • Определение быстроты процессов коррозии
  • Практика коррозионных испытаний металлов
  • Способы снижения коррозии: механизм и эффективность
  • Покрытие металлами
  • Окрашивание

Классификация видов ржавчины

Коррозия классифицируется по следующим признакам:

  • По равномерности протекания. Встречается более равномерная, поверхностная коррозия (при которой с одинаковой степенью уменьшается толщина стенки изделия) и неравномерная, очаговая коррозия, которая характеризуется возникновением поврежденных точек или язв на стальной поверхности.
  • По направленности действия. Встречается избирательная коррозия, при которой поражаются только определенные составляющие структуры металла, и контактная, разрушающая определенный металл (для биметаллических соединений).
  • По масштабам своего действия известны такие виды коррозии, как межкристаллитная, разрушительно действующая по границам зерен стали (с постепенным распространением вглубь), и объемная, поражающая всю поверхность одновременно.
  • Интенсивность коррозии значительно увеличивается, если кроме неблагоприятных изменений/колебаний температуры и влажности на контактную поверхность металла дополнительно влияют напряжения растяжения, а также химически агрессивная среда.

    Интенсивность коррозии многократно возрастает из-за растрескивания между смежными кристаллитами и их блоками. Еще агрессивнее на сталь воздействуют внешние растягивающе-сжимающие напряжения.

    Механизмы возникновения и развития коррозионных явлений

    Поскольку большинство стальных поверхностей работают в среде определенной влажности, а также в воде, водных растворах солей, кислот и щелочей, то преобладающим механизмом появления ржавчины является электролитический. Исключение составляет лишь печная коррозия, которая возникает в металлических конструкциях нагревательных устройств: там поверхностное разрушение происходит за счет образования высокотемпературной ржавчины – окалины.

    Электролитическая

    При электролитической коррозии в присутствии кислорода происходит реакция гидратации железа стали, конечным продуктом которой является гидрат окиси железа Fe(OH)2. Такое явление называют коррозией анодного типа. Но на этом процесс не заканчивается. Гидрат окиси железа – вещество нестабильное и в присутствии воды (или водных паров) довольно быстро распадается на различные окислы железа:

    • при повышенных температурах образуется преимущественно закись железа FeO;
    • при комнатных либо чуть выше – окись железа Fe2O3;
    • при промежуточных (в диапазоне температур +250…+450°C) – магнитная закись-окись железа Fe3O4.

    В любом случае поверхность стали ржавеет, только индикаторы данного явления могут быть либо красновато-коричневыми, либо серовато-желтыми.

    В присутствии кислот

    Несколько иной механизм образования ржавчины происходит в присутствии кислот, кислых растворов либо жидких сред, которые не содержат кислорода. Здесь происходит анодное растворение стали с образованием гидридов – соединений железа с водородом. Но последние являются химически нестойкими веществами, быстро окисляются в воздушной и влажной среде и также образуют ржавчину, только более рыхлую. Особенно быстро распадаются гидриды железа тогда, когда в атмосфере или окружающей среде присутствуют соединения серы.

    В присутствии нагрузок

    По третьей схеме происходит коррозия при наложении внешних нагрузок на контактные поверхности. Здесь, помимо двух традиционных составляющих, обязательно присутствует третий компонент – смазка. Поскольку все органические соединения всегда содержат кислород и водород, то при повышении температуры на контакте начинают протекать механохимические реакции окисления смазки. Они заканчиваются тем, что вместо снижения трения отработанная и частично уже разрушенная смазка начинает активно окислять поверхности, образуя ржавчины.

    Методы оценки коррозионных процессов

    Интенсивность коррозии относительно стали определяется в зависимости от характера коррозионных явлений. Начинают обычно с визуального выявления наличия ржавчины на поверхности.

    С помощью обычного микроскопа или даже лупы можно довольно точно оценить интенсивность коррозионных процессов и степень повреждения поверхности металла.

    Более точно определяют степень повреждения так называемые показатели коррозии. С их помощью можно выяснить:

    • потерю массы изделия вследствие коррозии;
    • уменьшение линейного размера детали или конструкции;
    • интенсивность повреждения в зависимости от времени пребывания детали в коррозионно-активной среде.

    Кроме количественной оценки наличия ржавчины, возможна и качественная. Ее индикаторами являются выявленные изменения микроструктуры стали. Так, выявляют межкристаллитную или избирательную коррозию. Гораздо реже интенсивность и скорость коррозии определяется по изменению химического состава окружающей металл среды или по количеству выделенного водорода.

    Конкретные показатели коррозии, которые влияют на скорость коррозии, включают в себя:

  • Интегральная коррозионная характеристика. Она рассчитывается как потеря массы стального изделия за год, деленная на площадь поверхности, на которой появилась ржавчина. При этом подвергшейся коррозии поверхностью стали считается такая, на которой имеются даже единичные поврежденные точки.
  • Линейная коррозия. Рассчитывается в зависимости от плотности детали и толщины корродировавшего за год слоя изделия.
  • Какую величину лучше использовать? Если есть возможность точно взвесить деталь до и после ее эксплуатации либо оценить изменения в химическом составе раствора, в котором эта деталь функционировала, то предпочтительнее интегральная оценка коррозионных процессов. В частности, оценивают работоспособность контактной смазки. Если деталь проверяется лишь несколько раз за год либо оценку интенсивности коррозионных явлений необходимо выполнить оперативно, то лучше использовать второй параметр.

    Определение быстроты процессов коррозии

    Показатели коррозии помогают определить и интенсивность неблагоприятных изменений. Для этого используют понятие «скорость коррозии металла». Ее можно оценить двумя различными характеристиками, изменяющимися во времени.

    Индикаторы коррозии можно установить по следующим количественным характеристикам:

    • по площади корродируемой поверхности;
    • по суммарной потере массы;
    • по изменениям в плотности;
    • по времени пребывания детали или конструкции в коррозионной среде (сутки);
    • по уменьшению толщины.

    При этом количественными критериями для оценки характера коррозии стали в течение определенного периода времени могут быть:

    • абсолютные коррозионные потери по площади;
    • изменение линейных размеров изделия;
    • линейное коррозионное сопротивление;
    • скорость коррозии;
    • линейная скорость коррозии (миллиметров в год);
    • суммарная коррозионная стойкость или долговечность.

    На практике применение того или иного критерия зависит от способа защиты металлической поверхности. Ее можно окрасить атмосферостойкими красками, а можно использовать металл с защитными покрытиями. Если коррозия протекает равномерно, тогда эффективность защиты может быть оценена более точно.

    Если же интенсивность образования ржавчины в разных местах изделия различна, то выбрать наиболее целесообразный способ защиты можно только тогда, когда деталь нагружается внешними растягивающими напряжениями. Тогда со временем изменяется не только внешний вид поверхности, но и некоторые ее физические характеристики, в частности, теплопроводность и электросопротивление.

    Практика коррозионных испытаний металлов

    Индикаторами коррозии являются климатические факторы – температура, состав и относительная влажность окружающей среды, характер распределения внешних нагрузок. Во внимание необходимо принимать также изменение освещенности по времени суток, количество осадков, возможное загрязнение воздуха. Например, в зонах выбросов дымовых отходов вблизи химических комбинатов и металлургических производств, сопровождающихся резким увеличением процентного содержания SO2, коррозионные процессы резко активизируются.

    В качестве индикаторов коррозионной активности можно использовать количественные зависимости коррозии от времени:

  • Линейные – чаще всего это характерно для металлических поверхностей, не имеющих защитного покрытия.
  • Экспоненциально убывающие – встречаются при кислотной коррозии обычных металлов и сплавов.
  • Экспоненциально возрастающие – когда на поверхности детали имеется защитное покрытие.
  • Интенсивность образования ржавчины при таких условиях снижают:

    • малая скорость ветра;
    • пониженная цикличность во времени изменения показателей относительной влажности;
    • характер воздействия коррозионно-активной среды на поверхность.

    При слабом ветре или его отсутствии нет условий для перемешивания потока, омывающего контактную поверхность стали. При длительных фазах пониженной и повышенной влажности в течение года пленка поверхностной ржавчины успевает сформироваться, набухнуть и отделиться от основного металла. Толщина поверхности снизится, зато коррозионные процессы вынуждены «запуститься» сначала, а для этого требуется не только время, но и подходящие условия – ветер или изменения в химическом составе воздуха, что бывает далеко не всегда.

    Влага, кислота или щелочь могут попадать на поверхность стали в виде капель либо струйным путем. Первый способ характерен для зон с повышенным количеством осадков, а второй – для неблагоприятной окружающей среды, в которой функционирует деталь или металлическая конструкция.

    Способы снижения коррозии: механизм и эффективность

    Способность окрашенной поверхности противостоять коррозионным процессам зависит от того, какой механизм коррозии преобладает. Например, при постоянном во времени воздействии химически активной среды существенно изменяется разность потенциалов внешней поверхности металлического изделия и его внутренних объемов. При этом возникают коррозионные токи, усиливающие процесс коррозии (явление, часто вызывающее разрушение стальных труб в подземных трубопроводах). Здесь окрашивание не дает никакого эффекта, поскольку химический состав поверхности, покрытой слоем краски, со временем не меняется.

    Покрытие металлами

    Иное дело, когда поверхность покрыта металлом, имеющим отрицательный электролитический потенциал по отношению к окислительно-восстановительным процессам. При преобладании окислительных реакций сталь эффективнее защитить путем нанесения поверхностного покрытия, содержащего в себе алюминий и цинк, – металлы, которые по своей кислородной активности стоят «левее» железа.

    Такие процессы – цинкование и алюминирование – широко применяются в практике антикоррозионной защиты стальных узлов и отдельных деталей, находящихся в окислительной среде. Окрашивание в данных ситуациях носит вспомогательный характер, для повышения декоративных характеристик поверхности.

    В восстановительной среде процесс образования гидридов железа может быть эффективно блокирован созданием поверхностных покрытий из металлов, находящихся «правее» водорода: это медь и все благородные металлы. Меднение, хоть и используется на практике, обычно выполняется для относительно небольших по площади поверхностей, поскольку является весьма затратным процессом в плане финансов. Именно для таких ситуаций можно и нужно применять окрашивание.

    Окрашивание

    Защитная роль красок состоит в том, что в их составе всегда присутствуют ингибиторы коррозии – компоненты, замедляющие во времени скорость протекания процессов окалинообразования. Химические формулы веществ-ингибиторов разработаны таким образом, что в результате приостанавливается появление ржавчины. Эластичность современных окрашивающих составов позволяет покрытиям успешно противостоять также и поверхностным напряжениям, которые провоцируют начало коррозионных процессов.

    Антикоррозионные свойства красок увеличиваются, если в их составе находятся кремнийорганические полимеры, которые повышают способность окрашенной поверхности противостоять перепадам влажности и температуры независимо от времени года. Однако такие краски обладают двумя существенными недостатками:

    • ядовиты;
    • малоэффективны в условиях электролитического механизма коррозии.

    Таким образом, правильно подобранные красящие составы могут достаточно эффективно блокировать коррозионные процессы. Для этого они должны содержать в себе ингибиторы коррозии, иметь достаточную эластичность и механическую прочность, незначительно изменяющуюся со временем.

    Репост
    Наверх